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1 Introduction 
Each molecule possesses 3N - 6 fundamental vibrations (3N - 5 for linear 
molecules) where N is the number of atoms per molecule. Thus, the diatonic 
molecule is the only type of molecule which has only one vibration. It is some- 
times assumed that this is the only situation where a one-dimensional vibrational 
potential function is applicable, but this is not the case. Altogether there are 
four types of vibrations that can be treated as one-dimensional systems. These 
are : the vibrations of diatomic molecules ; symmetry isolated vibrations; vibra- 
tions isolated by use of a high-frequency separation; and vibrations isolated by 
a low-frequency separation. The last two types of vibrations are only approxi- 
mately one-dimensional but can be treated as such with very little error. The 
low-frequency separation has been of special interest recently as it has been 
used to gather a considerable amount of data on molecular structures and intra- 
molecular forces. 

2 Diatomic Molecules 

A. The Harmonic Oscillator.-As a first approximation, the vibration in a dia- 
tomic molecule has traditionally been envisaged as a harmonic osci1lation.l The 
bond in the molecule is pictured as a spring with force constant k which results 
in a restoring forcef = - kq when the bond is displaced from its equilibrium posi- 
tion by an amount q. In terms of the displacement co-ordinate q, the potential 
energy can be written as 

v = 1/2 kq2 

When this is substituted into the one-dimensional wave-equation 

the wave functions and energy levels can be solved for directly. The well-known 
result for the vibrational energy levels is 

En = (n + 1/2)ti ( !$'2 n = 0,1,2, . . . ( 3 )  

E. Schrodinger, Nuturwiss., 1926, 14, 664. 
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where p = (mlm2) (m, + m2)-l, the reduced mass for the two-particle system. 
The wave functions are given by 

u/, = Nne-ag’12 ~n(d’24) (4) 

where Nn is the normalisation factor 

and a = (pk)l/z/fi. The H n  are the Hermite polynomials which are readily 
available in mathematics texts or elsewhere.2 The first four such functions are 

Ho(Z) = 1 HI(2) = 2 2  Hz(2) = 4Z2 - 2 H3(Z) = 823 - 122 (6) 

Figure 1 shows the harmonic oscillator potential function with the lower energy 

t 
V 

0 
0 

9 -  
Figure 1 The harmonic oscillator energy levels and wave functions 

levels and wave functions superimposed. For many practical purposes the 
harmonic oscillator approximation leads to a reasonable estimate for the force 
constant. The observed vibrational frequency u e  in cm-l is given by 

E. B. Wilson, J. C. Decius, and P. C. Cross, ‘Molecular Vibrations’, McGraw-Hill, New 
York, 1955, p. 289. 
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This approximation suffers primarily from the fact that Y--+ 00 as q -+ 00, 

whereas for real molecules V asymptotically approaches De, the dissociation 
energy, as q becomes large. As a result, the harmonic oscillator approximation 
works only for small amplitude vibrations near the bottom of the potential well. 

B. The Anharmonic 0scillator.To correct for the behaviour of the potential 
energy function at large vibrational displacements, the anharmonic oscillator 
is often introduced by adding a cubic term (and higher order terms if desired) 
to the potential function in equation 1. Although this is a somewhat better 
approximation than the harmonic oscillator, it overcompensates for the error 
at large values of q and, in fact, V - t  -m as q -+ co. This situation is shown in 
Figure 2 where the harmonic oscillator and anharmonic oscillator functions are 
compared to the experimental curve for HCl. 
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Figure 2 The potential curve and approximations for a diatomic molecule (HCl) 

The potential energy of the anharmonic oscillator can be written as a Taylor’s 
series 

(8) 
1 1 

21 3! 
V(q) = Yo + qv: + -q2Vo” + -qSv;‘’ + . . . 
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where the subscript 0 implies that V and its derivatives are evaluated at q = 0, 
the equilibrium position. The minimum of a potential curve is conventionally 
set equal to zero so that V(0)  = Vo = 0;  V,' is also zero since the first derivative 
of a function is always zero at a minimum. If we define k = V," and A = Vo"'/6, 
we can write the anharmonic potential function as 

V = 1/2kq2 + Aq3 + . . . where k A 

Fourth and higher power terms could be included if desired. In equation 9 
the cubic term serves as a perturbation on the harmonic oscillator and the 
energy levels are not very different from those of equation 3. These are conven- 
tionally given as 

(9) 

En = hcoe(n + 1/2) - /zcwexe(n + 1/2)2 + . . . (10) 

where W e  is given by equation 7 and WeXe is a singre constant, much smaller 
than W e .  If V0"" and higher derivatives are negligible, the anharmonicity 
constant is given by 

The constant A in equation 9 is usually negative but W e X e  is positive so that the 
harmonic oscillator energy levels are decreased somewhat because of the an- 
harmonicity. The observed vibrational fundamental and overtones of HCl can 
be fitted, to within experimental error, by using We = 2988.90 cm-l (k = 5.1574 
mdynes/& and W e X e  = 51-60 ~ m - l . ~  If no anharmonicity is introduced, the 
fifth excited state is calculated to be about lo00 cm-l or 8 %  too high in energy. 

C. Other Potential Functions.-A number of other potential functions have beer 
used to approximate the vibrations of diatomic molecules. The most popular 
of these is the Morse function5 

V(q) = De(1 - e-a'J)2 ( 1  2) 

where De is the dissociation energy and a is a constant characteristic of the 
molecule in a particular electronic state. The Morse function, which is also 
shown in Figure 2, matches that of a real molecule in that V-+ De as q - 00, 

but V does not approach infinity as it should at zero internuclear distance, 
q = - Ye. This is not a major drawback, however, since the region near q = - re 
is of little practical importance. In terms of equation 8, the Morse potential gives 

Since W e  and W e X e  can be obtained from experimental data by use of equation 10, 

G. W. King, 'Spectroscopy and Molecular Structure', Holt, Rinehart, and Winston, 

G. Herzberg, 'Spectra of Diatomic Molecules', 2nd Edn., Van Nostrand, Princeton, 

P. M. Morse, Phys. Rev., 1929, 34, 57. 

Chicago, 1964, p. 164. 

N.J., 1950, p. 55. 
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a and De can be calculated from equation 13 to give the Morse curve of equation 
12. 

Several other functions, most of which contain exponential terms, have also 
been applied; these include the Ryberg,g Lippincott,' and Varshni8 functions. 
The latter worker has reviewed a number of these functions. One of the best 
functions from a spectroscopic viewpoint is the modified Morse fun~tion,~ 

V(q) = De[(1 - e-aq)2 + ~ u ~ q ~ e - ~ ~ q ( l  + abq)] (14) 

where De and u are the constants from equation 12 and b and c are other con- 
stants that can be expressed in terms of spectroscopic parameters (we, WeXe ,  

De, Be, and are). 

3 Symmetry Isolated Vibrations 
All molecules other than the diatomics must have more than one vibration since 
(3N - 6) > 1 for N 2 3. However, symmetry often plays a r81e in separating 
the vibrational problem of dimension 3N - 6 into several sets of vibrations, each 
of smaller dimension. In several cases only one vibration will have a particular 
symmetry species and a one-dimensional problem results. For example, the 
three vibrations for a CZ0, water molecule have symmetry species 2A1 + B1. 
Thus the v3 mode, the antisymmetric 0-H stretching vibration of B1 symmetry, 
can be analysed as a one-dimensional system. The one co-ordinate is the appro- 
priate B1 symmetry co-ordinate, 

S3 = ( ; ) ' I2  ( A R ~  - AR,) 

where thedRr represent changes in the two O-H bond lengths. Because no other 
B, symmetry co-ordinates can be written, S3 is necessarily a normal co-ordinate 
of the moIecule. If Q = S3 is the normal co-ordinate, and if we assume a strictly 
harmonic vibration, we may write 

fi2d2!f' 1 
2 dQz 

--- + A Q V  = EY 

where A = 4n2c202 = FG. F and G are the symmetrised force constant and 
inverse mass elements used in 

F = F R -  FRR 

G = G R - G R R =  - +  
(:o 

the Wilson FG method. These can be written as 

cos a 
rnH l) -7G- 

where GR, GRR, FR, and FRR are the unsymmetrised G and F matrix elements. 
FR is the force constant for the O-H bond stretching and FRR is the interaction 

R. Ryberg, 2. Physik., 1931,73, 376. 
' E. R. Lippincott, J.  Chem. Phys., 1953, 21, 2070. 

Y. P. Varshni, Rev. Mod. Phys., 1957, 29, 664. 
H. M. Hulburt and J. 0. Hirshfelder, J. Chem. Phys., 1961, 35, 1901. 

537 



One-dimensional Potential Energy Functions in fibrational Spectroscopy 

constant for stretching both 0-H bonds simultaneously. The mo and m are 
the atomic masses of oxygen and hydrogen and 01 is the value of the HOH 
equilibrium angle. G can, therefore, be calculated directly from known values. 
The solution to equation 16 is 

E = h ~ w  = A(GF)1’2 

and the observed absorption occurs at 

Anharmonicity can be introduced into equation 16 by adding to the potential 
energy terms such as AQ3 + BQ4 + . . . . 

Many other molecules in addition to water have only one vibration belonging 
to a particular symmetry species. The normal vibrations for benzene, for instance, 
can be described as 2Alg + + 4E3, + 2 B 1 ~  + 2BzU + ~ E I U  + 2B2, + 
Elg + AzU + 2EzU. Consequently, the inactive Azs in-plane C-H wag and the 
i.r. active Azu out-of-plane C-H bending vibrations can be treated as one- 
dimensional situations. Another example of a symmetry isolated vibration comes 
from methane which has vibrations of symmetry species Al  + E + 2T. The A ,  
symmetric C-H stretching mode can be studied as a one-dimensional problem; 
this is an i.r. inactive but Raman active vibration. In general, the molecules 
which yield one-dimensional vibrations resulting from symmetry isolation are 
either those with few atoms or those with high symmetry. Among these are: 
Cl2O, HgCI2, SO2, BF3, N202, SiK, BrF,, and SF,. 

In a large number of cases symmetry isolated vibrations possess no special 
properties and are, therefore, not given any preferential treatment in an analysis. 
Since they are one-dimensional, however, it would be much easier to analyse 
in detail the nature of their potential functions. 

4 High-frequency Separation 
In a number of polyatomic molecules a high-frequency vibration can be treated 
as a one-dimensional system on the basis that it is only very slightly affected by 
all the other vibrational modes. For instance, the C-H stretching motion in 
CHBrzCBrs will give rise to a vibrational frequency near 2900 cm-l whereas 
none of the other vibrations have absorption peaks of even half that frequency. 
As a result there is virtually no interaction between the C-H stretch and the 
other molecular motions. The vibrations are therefore best treated as two 
separate problems-one consisting of seventeen modes, the other of one mode 
of vibration-rather than one system with eighteen vibrations. 

In some cases symmetry works hand-in-hand with the high-frequency separa- 
tion method to yield several one-dimensional systems. In cyclobutane,1° for 
example, there are several unique CH2 stretching vibrations, each of different 
symmetry, which can be considered as one-dimensional vibrational problems, 
e.g. the three Al ,  vibrations include vl ,  the CH, symmetric (in-phase) stretching 

lo R. C. Lord and I. Nakagawa, J. Chem. Phys., 1963,39,2951. 
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mode. The interaction force constants involving this vibration can be set equal 
to zero and hence this mode can be considered as independent from the other 
two and can be analysed separately. 

The high-frequency separation can be demonstrated in a simplified way. 
Assume we have two vibrations of a particular symmetry, one with a high 
frequency (-3OOO cm-’) and one with a low frequency (below 1500 cm-I). 
Associated with the high-frequency mode are the force constant FH and G 
matrix element GH. The other vibration has smaller constants FL and GL. Cross- 
term constants, which are even smaller in magnitude, are FHL and GHL. Accord- 
ing to the Wilson FG method our matrices are 

F = [ FHL FL FHL ] where FH > FL > FHL 

and G = [ GH GHL ] where GH > GL > GHL 
GHL GL 

The secular equation is 

HI1 - HI2 I H2, H 2 2 -  

where 

Hll = FHGII + FHLGHL 
H2,  = FHLGH + FLGHL 

HI2 = FHGHL + FHLGL 
H22 = FHLGHL + FLGL 

(241 

Since by far the largest term is HI, N FHGH, the higher frequency solution can 
be approximated as h 21 HI, ~li FHGH. Since h1l2 = ~ ~ T C W ,  for a separable 
C-H stretching mode we can write 

w = (277c)-1 (FHGH)~’~ = (27~c)-1 [ F c H ( ~ - ’  + l t 2 ~ - ~ ) ] ” ~  

= (2nc)-lFm1/2pc€€-1’2 (25) 

This is the result that is obtained from a simple two-atom harmonic oscillator 
approximation. In chloroform (CHCI,), for example, the C-H stretching 
frequency has been observed at 3019 cm-l. The force constant calculated from 
this number by use of equation 25 is 4.98 mdynes/& A more complete analysis 
including interaction constantsll gives 4-85 mdynes/& confirming that the high- 
frequency separation method can give good approximations. The overtones for 
the chloroform C-H stretching mode have been observed12 near 5900, 8700, 
11 315, 13 860, and 16 300 cni-l. If equation 10 is used with W e  = 3145 and 
W e X e  = 63 cm-l, the anharrnonicity can be accounted for quite accurately on 

l lN.  B. Colthup, L. H. Daly, and S. E. Wiberly, ‘Introduction to Infrared and Raman 
Spectroscopy’, Academic Press, New York, 1964, p. 452. 
I* Reference 4, p. 316. 
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the basis of the one-dimensional model. This simplified model can also be used 
to calculate isotopic shifts. For instance, a C-D stretching frequency can be 
estimated from 

= 1-362 

The observed isotopic shifts upon deuterium substitution are generally very 
close to this value. 

One specific situation in which one-dimensional potential functions resulting 
from a high-frequency separation can bevery valuable are in studies of hydrogen- 
bonded systenis.13 A function of the type 

where x is a measure of hydrogen-bonded distance and each ad is a constant, 
can be used to represent both symmetric or asymmetric potential functions. 
Unfortunately, the experimental data for systems of this type are not very 
extensive. 

5 Low-frequency Separation 
When one vibration has a much lower frequency than all of the others in a 
molecule, it can be isolated using the low-frequency separation method. This is 
analogous to the high-frequency method; in fact, it can be pictured that all of 
the higher frequency modes are separated from the low-frequency mode by use 
of the high-frequency separation method. If this is done for equation 23, removal 
of the high-frequency mode results in A N Ha2 N FLGL as the solution for the 
low energy vibration if the latter is assumed to be strictly harmonic; this is 
usually not the case. Most often these vibrations are highly anharmonic. 

The study of isolated low-frequency vibrations has been of considerably 
greater interest than that of the high-frequency modes. The reason for this is 
that a large number of quantum levels are populated when their energy separa- 
tions are small. As a consequence, many vibrational transitions originating 
from excited states can be observed and a very accurate potential function can 
be obtained for a vibration associated with low frequencies. Vibrations which 
can be studied individually, based on the low-frequency separation method, 
include molecular inversions, internal rotations (torsional vibrations), ring- 
puckering vibrations, and pseudorotation in ring molecules. Attempts have been 
made to study the double-minimum potential function for hydrogen bonds, but 
clear evidence for this has been difficult to find.l* 

l3 R. L. Somarjai and D. F. Hornig, J. Chem. Phys., 1962,36, 1980. 
l4 A. Finch, P. N. Gates, K. Radcliffs, F. N. Dickson, and F. F. Bentley, ‘Chemica IApplica- 
tions of Far-Infrared Spedroscopy’ Academic Press, 1970, Chapter 5. 
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A. Molecular Inversion.-The ammonia molecule has six vibrations (2A + 2E). 
The two vibrations of A l  symmetry are the symmetric N-H stretching and the 
molecular inversion modes which are readily separable due to their large energy 
difference. As a result, v2, the inversion mode shown in Figure 3, can be studied 

x=+x MIN x=o x=-x MIN 

Figure 3 The molecular inversion vibrational mode in ammonia 

independently as a one-dimensional problem. Since ammonia has two equivalent 
equilibrium structures of energy lower than the planar form, a double-minimum 
potential energy function is expected for the inversion. When the potential 
energy Vis plotted vs. x ,  the inversion co-ordinate (x = 0 for the planar structure 
and x = +xrnin at equilibrium), the curve shown in Figure 4 results. This has 
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Figure 4 Potential energy function for the inversion of ammonia 
Data from ref. 18 
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been found by determining the potential energy function that best fits the 
observed  transition^,^^ whichare also shown in the Figure. Several types of func- 
tions will yield the curve in Figure 4, including the Manning potentiaP and one 
of the form Y =  Ax4 - Bxa.17 A number of these types of potential functions 
have been described by Coon and co-workers18 and by Schutte.19 The best 
function appears to be 
V =  Ax2 + B exp (- Cx2) (28) 

where A = 1-18 dyne cm-l, B = 2.48 x 10-l2 erg, and C = 4.89 x 1Ol6 cm-2. 
The above potential corresponds to a barrier of inversion of 2022 cm-l or 
6.78 kcal mol-l. The spectra of ND3, NH2D, and NHD2 are also well fitted with 
a similar potential function. The energy levels are different, of course, since the 
reduced masses used in the one-dimensional wave equation 2 are different. 

The NH2 wagging mode of cyanamide (H,NCN) has also been studied. Only 
three transitions were observed for this compound and two others for DzNCN.20 
The data were analysed in terms of the Manning potential 

V(x) = (kp)-l[ - (A + D) sech* (2p)-lx + D~ech~(2p)-~x] 

where k = 4~ct(.fi-~ and A, D, and p are constants. Although equation 29 fits 
the available data quite accurately, it is not clear whether a potential function 
with as many adjustable parameters is needed. Equation 29 represents a double- 
minimum potential with a barrier of 660 cm-I (2.9 kcal mol-') at the planar 
configuration. Microwave data on formamide (H,NCHO) suggest a similar 
potential may be present in this molecule, with a barrier of 370 cm-l (1.1 kcal 
mol-l) . a1 

B. Internal Rotatiom-It is well known that in molecules such as ethane, methyl 
silane, and methylamine the stable configuration of the molecule is the staggered 
one; the configuration with the hydrogen atoms eclipsed normally lies a few 
kcal higher in energy. One of the vibrations in such molecules is the torsion or 
internal rotation, which is shown for methyl silane in Figure 5. Although 

Figure 5 The internal rotation (torsion) vibration in methyl silane 

Is W. S. Benedict and E. L. Player, Canad. J. Phys., 1957,35,1235. 
lC M. F. Manning, J. Chem. Phys., 1935,3, 136. 
l7 J. Laane, Appl. Spectroscopy, 1970, 24, 73. 

l9 C. J. H. Schutte, J. Chem. Educ., 1968,45, 567. 
2o W. H. Fletcher and F. B. Brown, J. Chem. Phys., 1963 39, 2478. 
21 C. C. Costain and J. M. Dowling, J.  Chem. Phys., 1960,32, 158. 

J. B. Coon, N. W. Naugle, and R. D. McKenzie, J.  Mol. Spectroscopy, 1966,20,107. 
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normally the molecule will vibrate near its equilibrium position, at times the 
amplitude of the vibration becomes sufficiently large to change the molecule 
from one staggered form to another. This requires crossing the energy barrier 
at the eclipsed configuration. The potential energy for the vibration in ethane is 
shown in Figure h in terms of 4, the angle between the hydrogen in adjacent 
CH, groups (4 = 0, 120,240, 360" for eclipsed configurations and 4 = 60, 180, 
300" for staggered configurations). Although, in principle, the torsional vibration 
in ethane is i.r. inactive, a few of the transitions have been observed in the far-i.r. 
spectrum of a sample under high pressure (7 atm).22 The energy levels and transi- 

E 

A 

Figure 6 Potential energy fmction and energy levels for the internal rotation in ethane 
Data from ref. 22 

tions derived from this work are also shown in Figure 6. The potential energy 
function used to describe the vibration of internal rotation has the form 

where only the terms n = N, 2N, 3N, . . . are used for an N-fold rotor. Thus, 
for a three-fold rotor such as ethane, the V, term is by far the most important 
although a V, term may contribute slightly. When higher order terms are small, 
as is usually the case, the V,  term is effectively a measure of the barrier to internal 
rotation. For ethane this is 1024 cm-I or 2.93 kcal mol-l. The internal rotation 
of many other molecules has also been studied by either far4.r. or microwave 

** S. WtiSe and G. E. Leroi, J .  Chem. Phys., 1968,48,962. 
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spectroscopy. In each case the vibrational energy levels can be obtained by solv- 
ing the wave equation 

-Bey + Vy= Ey/ 
dYz 

where B = h2(2rIa)-l is the internal rotation constant which can be calculated 
from the molecular structure; Vis given by equation 30. Much of the theoretical 
and experimental work done on internal rotation barriers has been summarised 
in several  review^.,^-^' Some of the available data are shown in Table 1. 

Table I Some three-fold barriers to internal rotationa 
Molecule Barrier Molecule 

MeCH, 2.93 MeCOOH 
MeNH, 1 -98 EtI 
MeOH 1 -07 EtBr 
MeSH 1.27 EtCl 
MeSiH, 1-60  EtF 
MeGeH, 1 -24 MeCHF, 
CH,=CHSiH, 1.50 Me,CO 
CH,=CHMe 1 -98 Me,O 
MeCHO 1-15 MeSiH, 

(kcal mol-l) 

a From references 21-26. 

Barrier 
(kcal mol-l) 
0.48 
2.40 
3.57 
3-56 
3.31 
3.18 
0.76 
2-72 
1-67 

The internal rotation of hydrogen peroxide presents one of the more interesting 
 case^.^^^^^ The equilibrium structure of the molecule has a dihedral angle of 
111". The trans form lies 1-1 kcal higher and the cis lies 7.1 kcal higher still. 
Figure 7 shows the potential energy curve and vibrational energy levels for the 
internal rotation of HzOz. 

C. Ring Puckering.-A saturated four-membered ring molecule and a five- 
membered ring with one double bond each have an out-of-plane vibration 
which causes the ring to invert from one configuration to another equivalent 
one. This vibration yields a large amount of information on molecular structure 
and forces and has been extensively studied for derivatives of cyclobutane and 
cyclopentene; it is shown in Figure 8 for the parent compounds. 

Some years ago it was postulated that these ring-puckering vibrations should 
have potential energy functions which are governed by quartic (x4) terms rathe 

23 E. B. Wilson, Adv. Chem. Phys., 1959,11, 367. 
a4 W. H. Flygare, Ann. Rev. Phys. Chem.. 1967, 18, 325. 

J. E. Williams, P. J. Stang, and P. von R. Schleyer, Ann. Rev. Phys. Chem., 1968,19, 531. 
08 C. C. Lin and J. D. Swalen, Rev. Mud. Phys., 1959, 31, 841. 

R. A. Pethrick and E. Wyn-Jones, Quart. Rev., 1969, 23, 301. 
** R. L. Hunt, R. A. Leacock, C. W. Peters, and K. T. Hecht, J.  Chem. Phys., 1965,42, 1931. 
a a  R. L. Hunt and R. A. Leacock, J. Chem. Phys., 1966,45, 3141. 
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Figure 7 Internal rotation potential energy function of hydrogen peroxide 
Data from ref. 28 

Figure 8 The ring-puckering vibration for (a) cyclobutane and (b) cyclopentene 

than the usual quadratic ones. This is because the restoring force of the vibration 
depends on the ring angle bending forces. It can be shown that these angles +i 

are related to the ring puckering co-ordinate x, the displacement of the ring 
from its planar configuration, byd$i s 2. The potential energy of the vibration 
depends on (A+#, i.e. it must depend on x4. This prediction has been confirmed 
in recent years although it has been found that it is desirable to include an addi- 
tional smaller quadratic term in the potential to match experimental observa- 
tions. Furthermore, the potential function 

V =  AX4 + Bxa (32) 

where A and B are force constants, has the advantage that it can be used to 
describe the vibration for both planar and non-planar ring systems. If B is 
positive or zero, the ring is planar; if B is negative the ring is puckered with a 
barrier to inversion of B2/4A. A is primarily a measure of the angle strain in the 
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Figure 9 Ring-puckering potential energy function for a planur molecule, silacyclopent-3-ene 
From ref. 30 
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Figure 10 Ring-puckering potential energy function for a non-planar molecule, silacyclobutane 
From ref. 31 
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system which tends to maintain a plafiar ring; B results from the barriers to 
internal rotation about the individual bonds in a ring that generally try to twist 
the ring into a puckered c~nfiguration.~~ Figures 9 and 10 show the potential 
energy functions and some of the observed far4.r. transitions for silacyclopent-3- 
ene30 and silacy~lobutane.~~ The former is a planar molecule; the latter is 
puckered. The spectrum for the four-membered ring is shown in Figure 11. 

L 

80 - 

;! 60- 

LO - 

20 - 

1 I 1  1 1 1 1  , I, I 

0 100 200 2 60 
WAVENUMBER IN CM-' 

Figure 11 Far4.r. spectrum of silacyclobutane 
From ref. 31 

Table 2 Barriers to inversion (kcal mol-l) for ring moleculesa 
M 

CH2 
0 
S 
Se 
SiH, 
C=O 
CF2 

1 -46 
0.04 
0.78 
1 -07 
1 -26 
0.01 
0.69 

C=CH2 0.46 

NH 

a From references 17, 32, and 38; 1 kcal mol-' = 350 cm-l. 
b Asymmetric potential function. 

Table 2 summarises some of the data that have been obtained from the far-i.r. 
spectra of four- and five-membered ring m01ecules.~~J~ Each spectrum was 

J. Laane, J.  Chem. Phys., 1969, 50, 776. 
31 J. Laane and R. C. Lord, J. Chem. Phys., 1968,48,1508. 
31 J. Laane, J .  Chem. Phys., 1970,52, 358. 
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analysed by use of equation 32 in a one-dimensional Schrodinger equation 2. 
The reduced mass for the vibration needed for the calculations can be deter- 
mined from the molecular structure. The potential energy function for each 
molecule not only makes it possible to determine the energy difference between 
planar and puckered forms, but also determines the configuration of each 
molecule. Silacyclobutane, for instance, has a dihedral angle of 36". 

In addition to far4.r. spectroscopy, microwave spectroscopy has been used 
the most to study ring-inversion ~ i b r a t i o n s . ~ ~ ~ ~ ~  Difference band ~ p e c t r a ~ ~ J ~  
have also been utilised and very recently laser Raman spectroscopy has also 
been applied to the problem.37 A comprehensive review on ring-puckering has 
now been prepared.38 

D. Pseudorotation.-Saturated five-membered ring molecules undergo a unique 
type of vibration known as p ~ e u d o r o t a t i o n . ~ ~ ~ ~  This phenomenon has recently 
been the subject of a review.42 Although ring molecules of this type have two 
low frequency vibrations, these are separable into modes of different sym- 
metry. The pseudorotation, which looks like an amplitude wave travelling about 
the ring, can then be studied as a one-dimensional system according to 

n 

where B is a pseudorotation constant and $ is a phase parameter. For cyclo- 

C s  - 'BENT' 

ENVELOPE 
c ,  -'TWIST' 

HALF-CHAIR 

Figure 12 Conformations of cyclopenfane 

33 D. 0. Harris, H. W. Harington, A. C. Lmtz, and W. D. Gwinn, J. Chem. Phys., 1966.44, 
3467. 
34 L. H. Scharpen and V. W. Laurie, J. Chem. Phys., 1968,49,3041. 
35 T. Ueda and T. Shimanouchi, J. Chem. Phys., 1968,49,470. 
36 T. B. Malloy, F. Fisher, and R. M. Hedges, J. Chem. Phys., 1970,53, 5325. 
37 F. A. Miller and R. 3. Capwell, to be published. 
38 C. S. Blackwell and R. C. Lord, Appl. Spectroscopy Rev., to be published. 
3B J. E. Kilpatrick, K. S. Pitzer, and R. Spitzer, J. Amer. Chem. SOC., 1947, 69, 2483; 1958, 
80, 6697. 
40 K. S. Pitzer and W. E. Donath, J.  Amer. Chem. SOC., 1959, 81, 3214. 
4 1  D. 0. Harris, et al., J .  Chem. Phys., 1969, 50,2438. 
42 J. Laane, Appl. Spectroscopy Rev., to be published. 
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pentane + = 0, n/S, 2n/5, . . . 277 correspond to bent (envelope) forms of the 
molecule and 4 = n/10, 3n/10, n/2,  . . . 19n/lO correspond to twist (half-chair) 
forms. During the vibration, as 4 changes, the molecule readily converts from 
one bent form, to a twist form, to another bent form, etc. The two configura- 
tions are shown for cyclopentane in Figure 12, and Figure 13 gives the course 
of the vibration. Since the bent and twist forms of cyclopentane have nearly the 
same energy, only a very small Vlo term is expected in equation 33 for this 

-0-4J-O 
4: 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 

BI+ T4+ 82- T5 -  B3+ TI+ 84- T2- B5+ 

b 
~ - ~ - O - ~ - ~ - G - ~ - ~ - ~  

PSEUDOROTAT I ON 0.45 
T3- T 3+ 

6 0.9 5 

t 

a90 0.85 0.80 0.75 0.70 0.65 0.60 0.55 0.50 
85- T2+ 84+ TI-  83- T5+ B2+ T4- BI-  

Figure 13 Pseudorotation of cyclopentane. #a is given in fractions of a circle 

Table 3 Barriers to pseudorotation of jive-membered rings" 
Molecule Barrier 

(kcal mol-l) - 
CH2CH2CH2CH ,CH 0 

CH2CH2CH2CH20 0-14 

CH2CH2OCHzO nJ 0.1 

- - 
B 
(cm-I) 

2.5 

3.19 

3.99 
1 

CH2CH2CH2CH2S 2.21 
I I 

CH2CH2CH2CH2SiH2 3.89 
I I 

CH2CH 2CH2CH ,Se 5.35 

2.35 

1 -97 

1.55 
I 1 

CH2CH2CH2CH2GeH2 5.9 1.5 
I I 

CHzCHzCH 2CH2C=O 3-72 

a From reference 42. 
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molecule. Not all the ring atoms are equivalent for derivatives such as silacyclo- 
pentane and thiacyclopentane, hence only 4 = 0, n, 27r represent bent forms 
and 4 = ~ / 2 ,  3r /2  represent twist forms; all other values of 4 indicate inter- 
mediate structures. For these derivatives Vz terms predominate although V3 
terms may be present. For silacyclopentane V, is 1360 cm-l (3.9 kcal mol-l) 
and this is a direct measure of the energy difference between the bent (Cn sym- 
metry) and twist (C,  symmetry) forms, the latter being more stable. Table 3 lists 
several of the pseudorotation barriers obtained from far4.r. data.42 A typical 
one-dimensional potential energy function in terms of 4 is shown in Figure 14 
for silacyclopen t ane .43 

140C 
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l 0 O C  
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Y(cfn-1)  
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tl 
0.6 0.0 1 .o 
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Figure 14 Pseudorotation potential energy function for silacyclopentane 
From ref. 43 

6 Calculation of Energy Levels 
All the important potential energy functions described previously have the form 

v = 2 anxn (34) 
n 

or 
1 
2 

V =  - 2 vn(1 - cosn+) 
n 

(35) 

43 J. Laane, J.  Chem. Phys., 1969, 50, 1946. 
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although equation 34 may have an extra Gaussian term [b exp( - cx2)] added. 
Except for the simple harmonic oscillator case where V =  $kx2, the energy 
levels for these potential functions cannot be solved from the wave equation in 
closed form. Approximation techniques are necessary to obtain the levels. The 
potential function in equation 34 has been discussed in detail and tables of 
energy levels are available.32 A similar discussion will appear for the potential 
of equation 35.44 Although a number of techniques have been used, the best 
method for calculating energy levels appears to be the use of harmonic oscillator 
basis functions for equation 34 and the sin-cos basis functions for equation 
35.45 In brief, the method is to set up first the Hamiltonian in the suitable basis 
representation and then diagnonalise the resultant matrix. The diagonalisation 
yields both the eigenvalues (energy levels) and eigenvectors (wave functions). 

As an example, for the potential function V =  (1/2)Vz(1 - cos 2d)  the 
Hamiltonian is 

H =  - d 2 / d p  + (VJ2B) (1 - cos 2#) (36) 

and the appropriately dimensioned energy levels E are given in terms of the 
eigenvalues A by E = BA. The Hamiltonian matrix is set up in both the sin and 
cos representations in order to obtain ‘odd‘ and ‘even’ levels respectively. The 
matrices have the form 

- H N ~  HNZ . . HNN 

where N is the number of basis functions used. The elements of the matrix are 
given by 

where y / k  and yl are the basis functions given by 
Y m  = n-“2 sin m$ 

for the sin functions and by 

(39) 

for the cos functions. Use of equations 36-39 gives the following Hamiltonian 
matrix in the sin representation for the two-fold potential 

44 J. D. Lewis, T. B. Malloy, and J. Laane, to be published. 
46 D. 0. Harris, G. G. Engerholm, and W. D. Gwinn, J .  Chem. Phys., 1965,43, 1515. 
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- 1+s, 0 - s2/2 0 . . .  0 
0 4 + s2/2 0 - s,/2 . . .  0 

- s 2 / 2  0 9 + s,/2 0 . . .  0 
0 -&/2 0 16 + SJ2 . . . 0 

- 0  0 0 0 . . . N 2 +  S,12 

where S 2  = V2/2B. The cos matrix is similar. 
For potential functions having the form of equation 35, harmonic oscillator 

basis functions based on the Hermite polynomials are used. The individual 
H ~ z  elements are calculated from equation 38 by use of Yna =V/m-lH.*. . 
That is, Y1 is the ground state wave function of the harmonic oscillator, Y2 is 
that for the first excited state, and so on. 

After the Hamiltonian matrix has been set up, the eigenvalues ( A  = E/B) 
and eigenvectors (wave functions) can be obtained by diagonalising the matrix.46 
This is a common procedure for a computer calculation and a number of data 
processing centres have it available as a standard subroutine. 

The energy levels resulting from the Hamiltonian in equation 36 have been 
tabulated in ‘Mathieu tables’ but these do not make it possible to work with the 
more general potential function in equation 35. 

7 Conclusion 
A number of situations give rise to one-dimensional vibrational problems. Of 
these, the low energy modes studied by far4.r. spectra can lead to the most 
valuable information. The spectra can be analysed in terms of either power 
series or periodic potential energy functions. The energy levels for these functions 
are best obtained using matrix diagonalisation techniques. 
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his research on low-frequency vibrations. 

*( A. Ralston, ‘A First Course in Numerical Analysis’, McGraw-Hill, New York, 1965, 
Chapter 10. 
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